DESIGN OF PILE CAP

pile cap is a thick concrete mat that rests on concrete or timber piles that have been driven into soft or unstable ground to provide a suitable stable foundation. It usually forms part of the foundation of a building, typically a multi-story building, structure or support base for heavy equipment. The cast concrete pile cap distributes the load of the building into the piles. A similar structure to a pile cap is a “raft”, which is a concrete foundation floor resting directly onto soft soil which may be liable to subsidence.

ASSUMPTIONS INVOLVED

DESIGN PARAMETERS

DESIGN PROCEDURE

Explanation of pile cap design with example:-

EXAMPLE 1 :-

Diameter of pile : 300 mm

Spacing between the piles : 3xd= 3×400 mm      [ As per IS 2911 (Part 1/Sec 3)   :2010 Clause : 6.6.2.]

                                                           = 1200 mm                                                                                               

                                                                                                 

No of piles under a pile cap: 3

Size of column : 400×400 mm

Load transferred by column : 1500 kN

Load on each pile : 1500/3= 500 kN

The dimension of the pile cap, the distance between the connecting line of the piles and the face of critical zone of punching shear are given in the figure with details……….. 

Details about the pile cap of this example

We have assume that the effective depth of pile cap is 500 mm………

Unit Moment at face AB = 0.287×1000= 287 kN-m

Unit Moment at face AC = 0.287×1000= 287 kN-m

Unit Moment at face BC = 0.1×1000= 100 kN-m

Formula used to calculate Area of steel against corresponding moment:

Mu= 0.87 x fy x As t x d (1 – 0.42 x Xu/d)

(AS PER IS:456 (2000) ANNEX G , CLAUSE 38.1………

Mu = Moment

fy   = Characteristic strength of steel, here 415

As t  = Area of steel

d= Effective depth of pile cap

Xu= Depth of neutral axis

Area of steel required parallel to AB = 1991 mm2

Area of steel required parallel to AC = 1991 mm2

 

Area of steel required parallel to BC = 693 mm2

  We should provide 12 mm rod of 113 mm2       

  Spacing through AB = (113 x 1000)/1991= 60 mm

Spacing through AC = (113 x 1000)/1991= 60 mm

Spacing through BC = (113 x 1000)/693= 160 mm

OVERALL DEPTH OF THE PILE CAP =(500+(100+12+12+6)X2)= 760 mm

Exit mobile version